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Abstract. The Heisenberg antiferromagnet on the triangular lattice with interlayer coupling
is treated via a double-time Green function. The hierarchy of the equations of motion of
the Green functions is decoupled by employing the Kondo–Yamaji methods. The excitation
spectrum, the correlation function, the internal energy, the specific heat and the susceptibility
are discussed. The results have good agreement with those of the exact diagonalization and the
nearest-neighbour virtual bonding state and can be compared with some experiments.

1. Introduction

Recent years have seen a flurry of interest in the properties of frustrated quantum Heisenberg
antiferromagnetic models (HAFMs), which have the possibility of non-Néel long-range
order. The triangular HAFMs are viable candidates to describe short-range order samples.
Indeed, quite some time ago Anderson proposed that the ground state of the triangular
HAFM is a resonating-valence-bond (RVB) state, which is a disordered spin liquid [1]. It
is well known that the family of high-Tc superconductors have layered structure with a very
strong coupling between spins in the plane and very weak coupling between planes. The
inter-plane coupling may play an important role in a disordered system.

In this paper, we start from the Heisenberg antiferromagnetic model (HAFM) on a
triangular lattice, which has strong intra-plane and weak inter-plane coupling and has no Néel
long-range order. We employ the double-time Green function following the Kondo–Yamaji
[2] methods to obtain a set of self-consistent equations, from which the spin excitation
spectra, the correlation functions, the ground energy, the specific heat and the magnetic
susceptibility can be obtained. The plot of specific heat versus temperature agrees very
well with the results obtained from the nearest-neighbour virtual bonding state (NNVB) [3].
The ground energy agrees with the RVB and the exact diagonalization results [4], and the
susceptibility can be compared with an experiment on Pr2CuO4 [5].

2. The self-consistent equations

The spin Hamiltonian appropriate for a strong-intra-plane- and weak-inter-plane-coupling
HAFM is

H = Jab
∑
〈i,j〉

si · sj + Jc
∑
〈l,j〉

sl · sj

where the first sum is over nearest neighbours in the planes andJab is the intra-plane
coupling parameter; the second sum is over the nearest neighbours out the planes andJc
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is the inter-plane coupling parameter. We define the ratioρ = Jc/Jab, which determines
the strength of intra- and inter-plane interactions. We setJab = 1 (hereafter the Boltzmann
constantKB = 1), then

H =
∑
〈i,j〉

si · sj + ρ
∑
〈l,j〉

sl · sj . (1)

Whenρ = 0, the system becomes as a two-dimensional triangular HAFM; and whenρ 6= 0,
the system is supposed to be a hexagonal space lattice HAFM with the nearest-neighbour
distance in planes equal to the inter-layer interval.

The quantum spin operators obey the Pauli spin algebra, and the spin Green function
can be defined by

G(i − j, t − t ′) = −iθ(t − t ′)〈[szi , szj ]〉 = 〈〈szi (t); szj (t ′)〉〉 (2)

whereθ(t) denotes a step function, and〈· · ·〉 denotes the thermal average. The time-Fourier
transform of the double-time Green function satisfies the equation

ω〈〈sz0; szn〉〉 = 〈〈[sz0, H ]; szn〉〉. (3)

Because the average〈sz〉 vanishes for the short-range order systems, employing the theory
of Kondo and Yamaji, which is a Green function decoupling scheme in the absence of any
finite magnetization and can be used to describe a spin-wave-like excitation in short-range
order, we introduce the correlation or short-range orderCn, which is defined by

Cn = 〈s0 · sn〉 = 3
2〈s+0 s−n 〉 = 3〈sz0szn〉. (4)

The decoupling approximations are

〈〈sσρ s−σρ sz0 − sσ0 s−σ0 szρ; szn〉〉 = 〈sσρ s−σρ 〉〈〈sz0; szn〉〉 − 〈sσ0 s−σ0 〉〈〈szρ; szn〉〉 (5)

〈〈sσρ ′s−σρ sz0 − sσ0 s−σρ szρ ′ ; szn〉〉 = 〈sσρ ′s−σρ + 2(α − 1)szρ ′s
z
ρ〉〈〈sz0; szn〉〉

−〈sσ0 s−σρ + 2(α − 1)sz0s
z
ρ〉〈〈szρ ′ ; szn〉〉 (6)

whereσ = ±1. The correlation function can be expressed by

〈sznsz0〉 = i
∫ +∞
−∞

dω

eβω − 1
{〈〈sz0; szn〉〉ω+i0+ − 〈〈sz0; szn〉〉ω−i0+}. (7)

The space-Fourier transform of〈〈sz0; szn〉〉 reads

G(k, ω) ≡
∑
n

eik·n〈〈sz0; szn〉〉. (8)

From equation (1), and from (3)–(8) we have the Green function

G(k, ω) = −C1

3π

zs(1− γsk)+ ρzc(1− γck)
ω2− ω2

k

(9)

the spin wave excitation spectrum

ω2
k = 2

3zs(1− γsk)( 3
4 − αC1+ αC2+ ραC3)+ 2

3ρzc(1− γck)[ρ( 3
4 − αC1+ αC4)+ 3αC3]

− 2
3αC1(zsγsk + ρzcγck)[zs(1− γsk)+ ρzc(1− γck)] (10)

and the correlation function

Cn = C1

N

∑
k

e−ik·nA(k)

ωk
coth

ωk

2kBT
(11)

where theα [2] is the decoupling parameter, which can be regarded as the vertex correction,

C1 = 〈s0 · sρ〉 = 3

2
〈s+0 s−ρ 〉 = 3〈sz0szρ〉 C2 =

∑
ρ 6=−ρ ′

Cρ+ρ ′ C3 =
∑
δ

Cρ+δ
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C4 =
∑
δ 6=−δ′

Cδ+δ′ γsk = 1

zs

∑
ρ

e−ik·ρ γck = 1

zc

∑
δ

e−ik·δ

A(k) = −[zs(1− γsk)+ ρzc(1− γck)]
andρ and δ are the nearest-neighbour vectors in and out of plane respectively;zs and zc
are the numbers of nearest-neighbour sites in and out of plane respectively. From equation
(11) we can obtain the self-consistent equation group as

3

4
= C1

N

∑
k

A(k)

ωk
coth

ωk

2kBT
(12)

1= 1

N

∑
k

γskA(k)

ωk
coth

ωk

2kBT
(13)

C2 = C1

N

∑
k

(zsγ
2
sk − 1)

A(k)

ωk
coth

ωk

2kBT
(14)

C3 = C1zc

N

∑
k

γskγckA(k)

ωk
coth

ωk

2kBT
(15)

C4 = C1

N

∑
k

(zcγ
2
ck − 1)

A(k)

ωk
coth

ωk

2kBT
. (16)

The internal energy and the static magnetic susceptibility of the system can be expressed
by

E = 〈H 〉 = N(zs + ρzc)C1 (17)

χ = g2µ2
B

3T

∑
n

Cn = −2g2µ2
B(zs + ρzc)

3B
(18)

where

B = 2
3{zs( 3

4 − αC1+ αC2+ ραC3)+ ρzc[ρ( 3
4 − αC1+ αC4)+ 3αC3]

−αC1(zsγsk + ρzcγck)(zs + ρzc)}/C1 (19)

µB is the Bohr magneton,g is the Lande factor andn is any lattice vector.
From the resolutions of the equation group we can plot the correlation, the internal

energy, the specific heat and the susceptibility versusT (see figure 1). Figure 1(b) shows that
when the ratioρ = 10−15 and 10−5, which means that the system nears a two-dimensional
sheet , the ground energy per site is aboutE/N = −0.95. This value is slightly higher than
that calculated from the exact diagonalization ,−1.1 [4], near to the RVB result,−0.98 [1],
lower than that estimated from the variational spin-wave theory,−0.926 [1], and close to
that of them = 2 fractional quantum Hall state,−0.94 [6]. Whenρ increases from 0.5 to
1.0 the ground energy varies from−1.07 to−1.40. Figure 1(c) shows that the curves of
specific heat have peaks aroundT = 0.75. In particular, for small ratio (ρ = 10−15, 10−5)
the curve quantitatively agrees with the results of NNVB [3]. Finally, figure 1(d) gives
some favourable results:the susceptibility peaks occur aroundT = 0.75 for mediumρ; but
as the sample approaches the two-dimensional sheet, i.e. the interlayer coupling becomes
very weak, the peaks are flattened and finally disappear. This conclusion agrees with some
experiments on non-triangular but doped samples, for example, Pr2CuO4 [5].

3. Conclusion

It is well known that a susceptibility peak occurs in undoped samples but the peaks are
flattened and finally absent with increased doping in the samples. In contrast, when the
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Figure 1. (a) The correlation functionC1 of the 3D triangular HAFM with inter-plane coupling
against the temperatureT when (1)ρ = 10−15 or 10−5, (2) ρ = 0.5 and (3)ρ = 1.0. (b) The
energy of the 3D triangular HAFM with inter-plane coupling against the temperatureT when (1)
ρ = 10−15 or 10−5, (2) ρ = 0.5 and (3)ρ = 1.0. (c) (1–3) The specific heat of the 3D triangular
HAFM with inter-plane coupling against the temperatureT when (1)ρ = 1.0, (2) ρ = 0.5, (3)
ρ = 10−15 or 10−5 and (4) the NNVB results. (d) Plot (1) is the magnetic susceptibilityχ

from experiment for Pr2CuO4 againstT . Plots (2)–(4) are the magnetic susceptibilityχ of the
3D triangular HAFM with inter-plane coupling whenρ = 10−15 or 10−4, ρ = 0.5 andρ = 1.0
respectively.

inter-plane interactions are taken into account the susceptibility peak of the undoped sample
disappears with the decrease of the inter-plane coupling strength. The conflict between
these two cases means that even a very small out-of-plane coupling is enough to destroy the
two-dimensional energy balance between the competing structures, thus generating some
observed transitions. In conclusion, the disappearance of the susceptibility peak is not a
general feature of an isotropic Heisenberg antiferromagnet and rather must be attributed to
anisotropies and in- and out-of-plane interaction, for example, the Dzyaloshinski–Moriya
interaction [7]. Indeed both doping and inter-plane coupling are causes of increased
frustration to the considered samples. Inter-plane coupling plays a doping-like role.

Finally, we should stress that this paper ignores the difference between in-and out-
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of-plane correlations. The in-plane correlation can be described by〈sxi sxj 〉 or 〈syi syj 〉 and
the out-of-plane correlation by〈szi szj 〉. If 〈sxi sxj 〉 = 〈syi syj 〉 = 〈szi szj 〉 there is only one spin
excitation spectrum. Generally,〈sxi sxj 〉 = 〈syi syj 〉 6= 〈szi szj 〉 and the consideration of this
difference will cause the 2D-like spin waves to be split into acoustic and optical branches
and will accordingly cause changes of other properties.
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